w 7.2 Equivalent Vector Channel

$o_{0} 1 s_{1}(t)$
$092 s_{1}(t 7.21$. Recall that we are considering the digital modulator/demodulator

Figure 24: Digital modulator/demodulator and the waveform channel

- The input of the modulator is the (random) message (index) $W \in$ $\{1,2, \ldots M\}$.
- Prior probabilities: $p_{j}=P[W=j]$.
- Each message is mapped to a waveform to be transmitted over the waveform channel as the transmitted waveform $S(t)$.
- There are M possible messages. So, there are M waveforms:

$$
s_{1}(t), s_{2}(t), \ldots, s_{M}(t)
$$

The (symbol) energy of the j-th waveform is $E_{j}=\left\langle s_{j}(t), s_{j}(t)\right\rangle$. The average energy per symbol is $E_{s}=\sum_{j=1}^{M} p_{j} E_{j}$.

- Transmission of the message $W=j$ is done by inputting the corresponding waveform $s_{j}(t)$ into the channel.
Therefore, the probability that the waveform $s_{j}(t)$ is selected to be transmitted is the same as the probability that the j-th message occurs:

$$
p_{j}=P[W=j]=P\left[S(t)=s_{j}(t)\right]
$$

- The noise $N(t)$ in the channel is assumed to be additive. So, the receiver observes $R(t)=S(t)+N(t)$. The noise is also assumed to be independent from the transmitted waveform $S(t)$.

Definition 7.22. Conversion of Waveform Channels to Vector Channels:

(a) Given M waveforms $s_{1}(t), s_{2}(t), \ldots, s_{M}(t)$, first find (possibly by GSOP) the K orthonormal basis functions $\phi_{1}(t), \phi_{2}(t), \ldots, \phi_{K}(t)$ for the space spanned by $s_{1}(t), s_{2}(t), \ldots, s_{M}(t)$.
(b) Next, convert the waveforms $S(t), R(t)$, and $N(t)$ to their corresponding vectors \mathbf{S}, \mathbf{R}, and \mathbf{N} by performing inner-product with the orthonormal basis functions: the i-th component of the vector is the inner-product between the waveform and $\phi_{i}(t)$. In particular,

$$
\begin{aligned}
& S_{i}=\left\langle S(t), \phi_{i}(t)\right\rangle, \quad R_{i}=\left\langle r(t), \phi_{i}(t)\right\rangle, \quad N_{i}=\left\langle N(t), \phi_{i}(t)\right\rangle . \\
& \left\{s_{1}(t), s_{2}(t), \ldots, s_{m}(t)\right\} \\
& \text { ヒ }
\end{aligned}
$$

Remarks:

- We use letter K instead of letter N to represent the number of orthonormal basis functions to avoid the confusion with the random noise which is also denoted by letter N.
- This conversion is the same as what we did when we convert waveforms to vectors via the GSOP. (See Eq. (34) and Figure 17a.) When $s_{j}(t)$ is transmitted, the corresponding "transmitted" vector will be $\mathbf{s}^{(j)}$.
7.23. Some facts:
(a) From the perspective of designing optimal demodulator, the waveform channel and the vector channel are "equivalent".
(b) For $R(t)=S(t)+N(t)$, we have $\mathbf{R}=\mathbf{S}+\mathbf{N}$.
(c) $E_{j}=\left\langle s_{j}(t), s_{j}(t)\right\rangle=\left\langle\mathbf{s}^{(j)}, \mathbf{s}^{(j)}\right\rangle$. $\left\langle r(t), s_{j}(t)\right\rangle=\left\langle\vec{r}, \vec{s}^{(j)}\right\rangle$
(d) Prior probabilities:

$$
p_{j}=P[W=j]=P\left[S(t)=s_{j}(t)\right]=P\left[\mathbf{S}=\mathbf{s}^{(j)}\right]
$$

(e) $\mathbf{S} \Perp \mathbf{N}$

$$
\text { with } P S D=\frac{N_{0}}{2} \text { across all freq. }
$$

(f) When $N(t)$ is a white noise process, we have
(i) $\mathbb{E}\left[N_{j}\right]=0$, and
(ii) $\mathbb{E}\left[N_{i} N_{j}\right]=\left\{\begin{array}{ll}N_{0}, 2, & i=j, \\ 0, & i \neq j .\end{array} \vec{N}=\left(\begin{array}{c}N_{1} \\ N_{2} \\ \vdots \\ N_{k}\end{array}\right)\right.$

In other words, the noise components are uncorrelated and $\mathbb{E}\left[N_{i}^{2}\right]=$ $\operatorname{Var} N_{i}=\frac{N_{0}}{2}$.

$$
\operatorname{Var} X=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2}
$$

